
Andy Lester
andy@petdance.com

http://petdance.com/perl/

Automated Testing of
Large Projects

With Perl

• Strategy

• What & how to test

• 5 things you can do on Monday

• 5 things for next week

• 5 for next month

Where we're going

• 2/3rds of sales

• Constantly under
development

• 90K lines of Perl
& PHP

• 9215 tests (at
press time)

About TITLEWAVE

• Make testing
simple

• Test constantly

• Test extensively

• Make testing part
of your culture

Testing Strategy

• Humans still have to write the tests

• Tests that are a pain to write won't get
written

• Tests that aren't understood won't be
maintained

• Use a smoke script to allow testing of
selected tests

Make testing simple

#!/usr/bin/perl

use File::Find::Rule;
use Test::Harness qw(&runtests);

my $rule = File::Find::Rule->new;
$rule->or(
 $rule->new->directory->name('CVS')->prune->discard,
 $rule->new->file->name('*.t')
);

my @start = @ARGV ? @ARGV : '.';
for (@start) {
 push(@files, (-d) ? $rule->in($_) : $_);
}

runtests(@files);

smoke

$ smoke HTML.t
HTML....ok
All tests successful.
Files=1, Tests=52, 0 wallclock secs

$ smoke
HTML..........................ok
Images........................ok
Page..........................ok
Page/Admin....................ok
Page/Curricula................ok
All tests successful.
Files=5, Tests=210, 10 wallclock secs

Running smoke

• Have a smokebot

• Smoke your file as you’re building it

• Smoke your individual files before
committing

Test constantly

• Test depth

• Test breadth

• Test anything that's ever gone wrong

• Remember: Human testing doesn't scale

Test extensively

• Don't write code that can't be tested

• Any test that fails must be fixed immediately

• Code reviews must include the
corresponding test files

• Everyone on the team adds at least one new
test every day

• If you hire, explicitly look for testing
experience in your candidates

Make testing
part of your culture

• Premature (and
unnecessary)
optimization is the
root of all evil.

• Tests run once an
hour, when you’re
not watching
them.

Ignore efficiency

• Each test adds to your army of tests

• Ignore DRY (Don't Repeat Yourself)

Redundancy is good

$foo->set_wango('tango');

is($foo->wango(), 'tango');

• Of course it works! It's just an accessor!

• But what if it doesn't? What will you have
to go through to find it?

There are no stupid tests

• Modules/libraries

• Coding standards & project information

• Application data

• Application logic

• Anything that has ever gone wrong

What to test?

• Simplest way to
start

• Commonly done
throughout Perl

• Pick a widely-used
module with a lot
of tests and steal
ideas.

Modules/libraries

• Is all HTML clean?

• Do you use strict & warnings?

• Does each .pm file have a .t?

• Is POD correctly formatted?

• Write tests to verify!

Coding standards

• Define the start of the directory as an
environment: we use $TWROOT.

• Find the files to check

• Watch out for CVS directories

• File::Find

• File::Find::Rule is easier in many cases

• Do your checks on each file in the project

Checking your project

Find all Perl files, but don’t look in CVS

my $rule = File::Find::Rule->new;
$rule->or(
 $rule->new->directory->
 name('CVS')->prune->discard,
 $rule->new->file->name('*.pl','*.pm','*.t'));

my @files = $rule->in($base);

for my $file (@files) {
 check($file);
}

Dev/Rules.t

sub check {
 my $filename = shift;

 my $dispname =
 File::Spec->abs2rel($filename, $base);

 local $/ = undef;

 open(my $fh, $filename) or
 return fail("Couldn't open $dispname: $!");
 my $text = <$fh>;
 close $fh;

 like($text, qr/use strict;/,
 "$dispname uses strict");
 like($text, qr/use warnings;|perl -w/,
 "$dispname uses warnings");
} # check()

Dev/Rules.t

for my $filename (@files) {
 open(my $fh, $filename) or
 fail("Couldn't open $filename"), next;
 local $/ = undef;
 my $text = <$fh>;
 close $fh;

 if (is_php($text)) {
 ++$php;
 pass("$dispname (skip)");
 } else {
 ++$html;
 my $lint = HTML::Lint->new;
 $lint->only_types(HTML::Lint::Error::STRUCTURE);
 html_ok($lint, $text, $dispname);
 }
}
diag("$html HTML files, $php PHP files”);

Dev/HTML.t

use Test::More;
use Test::Pod 0.95;

my @files = # build file list

plan(tests => scalar @files);

for my $filename (@files) {
 pod_file_ok($filename);
}

Dev/pod.t

• App data is as important as the code itself.

• Catch things DB constraints can’t

• Customer number formats

• URL validity

• App-specific data format

Application data

• Constraints might be too expensive

• Constraints might get deleted accidentally

• Test for valid constraints!

• Try to add a bad foreign key

• Make sure it fails

Redundant is good

use Test::More 'tests' => 1;
use FLR::DB qw(:sqldo);

FLR::DB::setparms(
 USERNAME => 'SYS',
 PASSWORD => 'CHANGE_ON_INSTALL'
);

eval { sqldo_column('select 1 from dual'); };
my $failed = defined $@;
ok($failed, 'SYS user should not have default pw');

Oracle/syspw.t

use Test::DatabaseRow;

my @good_users = qw(FOLLETT CTXSYS MAINFRAME);
plan(tests => @good_users + 1);

use_ok('FLR::DB');
$Test::DatabaseRow::dbh = FLR::DB::dbh();

for my $user (@good_users) {
 row_ok(
 table => "DBA_USERS",
 where => [username => $user],
 label => "$user exists",
);
}

Oracle/userscheck.t

• WWW::Mechanize wraps LWP::UserAgent
and HTML::Form

• Lets you think about interactions, not web
mechanics

• HTML::Lint checks validity of HTML

Web pages & apps

use Test::More tests => 10;
use Test::HTML::Lint;
use WWW::Mechanize;

my $a = WWW::Mechanize->new();
isa_ok($a, "WWW::Mechanize") or die;

$a->get("http://petdance.com/");
is($a->status, 200, 'Fetched OK');
like($a->title,
 qr/^petdance.com: Andy Lester/,
 "Correct page title"
);
html_ok($a->content, "Home page HTML");

Simple page loading

Continuing from previous slide...

$a->follow_link(text_regex => qr/resume/);
ok($a->success, 'Got resume');
like($a->title, qr/Andy Lester.+resume/,
 "Title correct");
html_ok($a->content, "Resume HTML");

$a->follow_link(text_regex => qr/Google Hacks/);
ok($a->success, 'Followed Google Hacks');
like($a->title, qr/Google Hacks/, "Title correct");
like($a->uri, qr[^http://www.oreilly.com],
 "It's on oreilly.com"

Following links

1..10
ok 1 - The object isa WWW::Mechanize
ok 2 - Fetched OK
ok 3 - Correct page title
ok 4 - Home page HTML
ok 5 - Got resume
ok 6 - Title correct
not ok 7 - Resume HTML
Failed test (follow.pl at line 23)
Errors: Resume HTML
(26:5) at (21:7) is never closed
(69:63) with no opening <a>
(85:5) <td> at (84:2) is never closed
ok 8 - Followed Google Hacks
ok 9 - Title correct
ok 10 - It's on oreilly.com
Looks like you failed 1 tests of 10.

The results

use Test::More tests=>10;
use WWW::Mechanize;

my $a = WWW::Mechanize->new();
isa_ok($a, 'WWW::Mechanize') or die;
$a->get("http://www.google.com/");
ok($a->success, "Got Google");
$a->form_number(1);
$a->field(q => "Andy Lester");
$a->click("btnG");

ok($a->success, "Got the results page back");

$a->follow_link(text_regex => qr/petdance\.com/);
ok($a->success, "Followed the link");
is($a->uri, "http://www.petdance.com/");

Testing forms

• Many problems aren’t your fault, but you still
have to deal with them.

• CGI.pm changed the behavior of the input()
function.

• PHP broke the sprintf() function.

Anything that has
ever gone wrong

#!/usr/bin/perl -w

use strict;
use Test::More tests=>4;

use_ok('CGI', ':standard');
use_ok('Test::HTML::Lint');

CGI 2.91 broke the handling of the <input> tag.
Make sure we don't run afoul of it.
Apparently it's been fixed in 2.92.
INPUT: {
 my $text = input({foo=>'bar'});
 is($text, q{<input foo="bar" />},
 "Built expected string");
 html_ok($text, "Valid HTML");
}

Dev/perl/CGI.t

// printf et al broke between PHP 4.2.3 and PHP 4.3.0
// I reported it as bug #22227
// http://bugs.php.net/bug.php?id=22227
// Closed as being the same as #20108
// http://bugs.php.net/bug.php?id=20108

require("Test.php");

plan(3);

diag("PHP Version " . phpversion());

$masks = Array("%-3.3s", "%.3s", "%-.3s");
$str = "abcdefg";
foreach ($masks as $mask) {
 $result = sprintf("[$mask]", $str);
 is($result, "[abc]", "[$mask]");
}
test_end();

Dev/php/sprintf.phpt

How do I start?

1. Read Schwern's Test::Tutorial

2. Start a test suite for one module

3. Start a smokebot

4. Start looking at t/*.t for modules you use

5. Spread the gospel

5 things to do Monday

1. Write tests for an entire module

2. Add at least one new test daily

3. Start keeping metrics

4. Memorize Test::More, Scalar::Util and
Test::Util. Explore other Test::* modules.

5. Read The Pragmatic Programmer and at least
one other book on XP or testing.

5 for next week

1. Post your first month of metrics.

2. Write data and application tests.

3. Modify your coding standards or process to
explicitly require tests.

4. Look at JUnit to see what you can learn.

5. Create your own domain-specific Test::*
module. Post it to CPAN if appropriate.

5 for next month

http://petdance.com/perl/

Test::Tutorial

Schwern’s slides:
http://mangonel.guild.net/
~schwern/talks/

The Pragmatic Programmer,
especially chapter 8

Any good XP intro book, like
Extreme Programming Installed

More information

